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Gravitational lensing of light rays on their way to the Earth. [NASA, ESA & L. Calçada]

An observed gravitational lens. 
[NASA, ESA, A. Bolton (Harvard-Smithsonian 
CfA) and the SLACS Team]

Strong Galaxy-Scale Gravitational Lensing
• This is the distortion of the paths of light rays from a background galaxy into arcs or rings as viewed from 

Earth, caused by the gravitational field of an intervening foreground galaxy (the ‘lens’).
• Lensing provides a useful way of investigating the properties of distant galaxies and the early Universe, 

including:
a) providing constraints on the distribution of mass (mass profile) and the dark matter content of 

the foreground lensing galaxy,
b) combining with redshift to aid in galaxy evolution models and dark matter simulations,
c) and providing a magnified view of the high-redshift source galaxy.

• But this requires accurate modelling of the lens' mass profile, usually through slow but accurate 
parametric techniques to determine parameters of the mass profile.

Project Overview
• To date, only several hundred strong lenses have been found. 

However, upcoming surveys such as Euclid [1] and the Legacy 
Survey of Space and Time (LSST) [2] will generate billions of 
images containing many tens of thousands of lensing systems, 
so a more efficient modelling method is needed to cope with 
such a large data set.

• This project aims to use machine learning to develop a fast, 
automated approach to model strong gravitational lenses 
straight from images, with similar accuracy to parametric 
techniques.

• We train an approximate Bayesian convolutional neural 
network (CNN) to estimate lens mass profile parameters, 
investigating its effectiveness when applied to Euclid-style 
images and comparing this to conventional parameter-fitting 
techniques.



Conventional Lens Modelling – PyAutoLens
Modelling is typically done using parametric parameter-fitting techniques such as PyAutoLens [3], 
where an automated process adjusts parameters of a mass profile to best fit the observed image. 
However, this requires manually-set initial ‘guess’ values (priors) and a large amount of time and 
computing power.

Convolutional Neural Networks (CNNs)
• Just as the brain is made up of interconnected neurons, a neural 

network consists of layers of nodes, with nodes connected between 
layers and the strengths of these connections given by 'weight' values.

• CNNs are a subset of neural networks that have grid-like layers 
mainly for analysing images, and apply filters in order to extract 
information. An example CNN is shown in below.

• CNNs can be improved through training, typically requiring a 
minimum of tens of thousands of training images. As not enough 
images of real lenses exist, they must be simulated instead.

Neurons in the brain. 
[https://indianapublic
media.org/amomentof
science/lose-neurons/]
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Example CNN structure. Pooling layers decrease image size, other layers extract features and relationships in the data.

Mass model parameters overlaid onto an Einstein Ring. 
(Cosmic Horseshoe, LRG 3-757) [ESA/Hubble & NASA]
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Comparing & combining with conventional fitting
• The CNN was trained on 100,000 complex images generated to resemble expected observations by Euclid (VIS band).
• It’s approximate Bayesian formalism [4] allowed the CNN to predict values for the lensing galaxies’ mass model parameters as well as their 

uncertainties, 𝝈.
• We compared the CNN to PyAutoLens for increasingly complex test sets, from smooth light & mass profiles to images with EAGLE simulation lenses 

[5,6], real HUDF sources [7] and extra line-of-sight structures (LOSS). These were generated using the Pipeline for Images of Cosmological Strong 
Lensing (PICS) software [8].

• We also tried combining the two techniques, using CNN predictions (values & uncertainties) as priors for PyAutoLens.

Mass Model Parameters
• The radius of the Einstein ring, aka the 

Einstein radius, 𝜃𝐸
• The orientation, 𝜙
• The semi-minor to semi-major axis ratio, 𝑞



Accuracy
• Overall, CNN errors were 19 ± 22% lower than 

PyAutoLens’ blind modelling.
• The combination method instead achieved 27 ± 11% 

lower errors, reduced further to 37 ± 11% when 
incorporating CNN-predicted uncertainties into the 
priors.

• These modelled mass profiles were singular 
isothermal ellipsoids. While not included here, 
similar results were obtained for the more general 
and difficult-to-model power law mass profile.

Above: Example simulated training images

Simple smooth lens and source profiles EAGLE lenses + HUDF sources + LOSS

 Predicted vs. True Parameters   →
Blue = CNN

Orange = PyAutoLens (PyAL)
Green = PyAL + CNN values as priors

Red = PyAL + CNN values & (1σ) uncertainties as priors
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Incorporating CNN predictions and uncertainties 
reduces PyAutoLens errors by:

37-44% 15-34%



Summary
• The CNN can accurately measure mass profile parameters for Euclid-style 

images, much more rapidly than conventional modelling.
• CNN accuracy is equals or exceeds an automated PyAutoLens, while the 

combination of the two significantly improves upon both, especially when 
including CNN-predicted uncertainties.

• Using CNN predictions as priors additionally increases the modelling speed of 
PyAutoLens.

• Hence, the combination of CNNs with conventional parameter-fitting 
approaches is a promising new method that for automated lens modelling can 
potentially outperform either separately.

• Additionally, training on larger, more complex data sets could improve 
performance even further!

SIE lens +HUDF source

EAGLE lens + HUDF source
+ LOS structure

Modelling Times
(CNN times not included as they are less than a second!)

Incorporating CNN predictions makes PyAutoLens more consistent, 
and compared to PyAL (blind) modelling speed is increased by a 
mean factor of:

1.19x for PyAL + CNN, 1.73x for PyAL + CNN (1σ)

Example simulated test images containing EAGLE galaxy lenses
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